Higher Colkegory Theory - Lecture 2
Notation:

- Action of simplicial operators

$$
\begin{aligned}
& X_{n} \xrightarrow{X(f)} X_{m} \\
& a \longmapsto a \cdot f
\end{aligned}
$$

- Description of simplicial operators

$$
\begin{aligned}
& \delta:[m] \longrightarrow[n] \\
& 0 \longmapsto \delta(0) \\
& \vdots \vdots \\
& m(m)
\end{aligned}
$$

we write as $\delta=\left\langle\delta_{0} \ldots \delta_{n}\right\rangle$.
Example: Coface operators: $d^{i}:[n] \rightarrow[m]$ "omits $i^{\prime \prime}$, so for

$$
[0] \underset{d^{1}}{\stackrel{d^{0}}{\leftrightarrows}}[1]
$$

can be writer as $d^{0}=\langle 1\rangle$ and $d^{4}=\langle 0\rangle$.
Example: Codegeneracy operators: $[0] \stackrel{\varsigma^{\circ}}{\leftrightarrows}[1] \underset{s^{\circ}}{\stackrel{s^{\circ}}{\leftrightarrows}}[2]^{\prime \prime}$ repeat i",
so they can be written as $s^{i}:[2] \rightrightarrows[1]$

$$
s^{0}=\langle 001\rangle \text { and } s^{1}=\langle 011\rangle
$$

We con shorten notation by whiting $a \cdot f=a_{i_{1} \ldots i_{n}}$.

The nerve of a category: Let 6 be a category, we can define a osset

$$
N_{n} E=\operatorname{Ham}_{\text {cat }}([n], G)
$$

and given $f:[m] \rightarrow[n]$ we have

$$
\begin{aligned}
& N_{n}(G) \rightarrow N_{m}(G) \\
& a:[n] \rightarrow G \mapsto a f:[m] \rightarrow G
\end{aligned}
$$

Let $F: G \rightarrow D$ be a functor, then

$$
\begin{aligned}
N_{n}(G) & \rightarrow N_{m}(D) \\
a & \mapsto F \cdot a
\end{aligned}
$$

is a simplicial map. In particular, we have

- $N_{o} G \approx O b G$
- $N_{1} G \approx \operatorname{Mor} 6$ and the operators

$$
\begin{aligned}
& \langle 0\rangle:[0] \rightarrow[1] \leadsto f\langle 0\rangle=\text { source } f \\
& \langle 1\rangle:[0] \rightarrow[1] \\
& \langle 00\rangle:[1] \rightarrow[0] \leadsto\langle 1\rangle=\text { target } f \\
& \\
& \langle\langle 0\rangle=i d x
\end{aligned}
$$

- $N_{2} G \approx$ composable pairs (f, g) s.t $f\langle 1\rangle=g\langle 0\rangle$.

Proposition: Let G be a category with object set $a b \in$ and morphism set mar E. We have

1) there is a bijective correspondence

$$
\begin{aligned}
N_{n} b & \sim\left\{\left(g_{1}, \ldots, g_{n}\right) \in(\operatorname{mor} G)^{n} \mid \operatorname{tar} g_{i-1}=\operatorname{sor} g_{i}\right\} \\
a:[n] \rightarrow \sigma & \mapsto\left(a_{0.1}, \ldots, a_{n-1, n}\right)
\end{aligned}
$$

2) with respect to $N_{n} G \xrightarrow{\sim} \operatorname{mor} \sigma \times \ldots \times \operatorname{mor} G$, the map

$$
\delta^{*}: N_{n} G \rightarrow N_{m} G
$$

induced by a simplicial operator $\delta:[m] \rightarrow[n]$ coincides with

$$
\begin{aligned}
\left(g_{1}, \ldots, g_{n}\right) \rightarrow\left(h_{1}, \ldots, h_{m}\right) \\
h_{k}= \begin{cases}\text { id } & \text { if } \delta(k-1)=\delta(k) \\
g_{j} g_{j-1} \cdots g_{i+1} & \text { if } \delta(k-1)=i<j=\delta(k) .\end{cases}
\end{aligned}
$$

Proposition: A simplicid set X is isomerphic to the nerve of some category inf $\forall n \geqslant 2$

$$
\phi_{n}: X_{n} \rightarrow\left\{\left(g_{1}, \ldots, g_{n}\right) \in X_{1}^{n} \mid g_{i-1}\langle 1\rangle=g_{i}\langle 0\rangle\right\}
$$

are bijections.
Proof: Let x satisfy the previcus conditions. Then we define

$$
x_{0}=o b 6 \quad \text { and } \quad x_{1}=\operatorname{mar} 6
$$

For identities we set $\langle 00\rangle^{*}: X_{0} \rightarrow X_{1}$. For $(g, h) \in X_{1} x_{x_{0}} x_{1}$, the composite is $a_{02}=\phi_{2}^{-1}(f, g)\langle 0, z\rangle$. Associativity: (g, h, k)
are associative, so we have $a=\phi_{3}^{-1}(g, h, k)$

Given $x \in X_{0}, g \in X_{1}$ s.t $g\langle 1\rangle=x$. $\left(g, x_{\infty}\right)$ form a amposable pair since $x_{00}=(x\langle 00\rangle\rangle\langle 0\rangle=x|\langle 00\rangle\langle 0\rangle\rangle=x$. We have a 2 -c el

$$
y^{9 / a} a{ }^{x}{ }_{x}^{i d x}
$$

but $(g\langle 0 \mid 1\rangle)\langle 01\rangle=g(\langle 011\rangle\langle 01\rangle)=g$ and

$$
\begin{aligned}
(g\langle 0 \|\rangle)\langle\mid 2\rangle & =g(\langle 0 \|\rangle\langle 1\rangle\rangle)=g\langle 11\rangle \\
& =(g\langle 1\rangle)\langle 00\rangle=x_{\infty}=i d x
\end{aligned}
$$

and $(g\langle 0 \| 1\rangle)\langle 00\rangle=g(\langle 0 \| 1\rangle\langle 00\rangle)=g$, so by uniqueness of a, if fellows that $a=\langle 011\rangle$.
Proposition:
$N_{1}:$ Cat \rightarrow set

$$
G \mapsto N_{0} G
$$

gives $\operatorname{Hem}_{\text {cat }}(G, D) \simeq \operatorname{Ham}_{\text {set }}(N, G, N, D)$.
Definition: The horn $\Lambda_{j}^{n} \subset \Delta^{n}$ are defined by

$$
\left(\Lambda_{j}^{n}\right)_{k}=\{f:[k] \rightarrow[n] \mid([n] \backslash j) \notin f([k])\} .
$$

A ham Λ_{j}^{n} is inner if $O<j<n$.
Proposition: Let x be o simplicial set, x is the nerve of a cetegory iff

$$
\operatorname{Hom}\left(\Delta^{n}, x\right) \xrightarrow{\sim} \operatorname{Ham}\left(\Lambda_{j}^{n}, x\right)
$$

$$
\text { for all } n \geqslant 2,0<j<n \text {. }
$$

