Chiral CFT Reference: André Henriques Z: Cobconf -> Concrete Linear Categories Topological setting: diffeomorphism classes of E:M->N with identity [MXI]. Conformal setting : adapt the bordism category. Conformal structure: (Σ, g) where $g \sim g'$ if there exists $\lambda: \Sigma \rightarrow \mathbb{R}$ such that $g = \lambda^2 g'$. In 2 dimensions: orientable mflds with conformal structure = Riemann surfaces. We have the category Cobz with: · objects: disjoint unions of 51; · morphisms: complex cobordisms; To add identities - cobordism with thin ports:

Definition:

$$a, b: \mathbb{R} \to \mathbb{R}, a \leq b$$

 $X_a^b = \{x + iy \in C \mid a(x) \leq y \leq b(x)\}$
 $U_{Xb}(u) = \{f: u \to c \mid flungs holomorphic interior \\ \exists V \subseteq c \text{ and } g \in C^{p}(v)\}$
 $(X_a^b, O_{X_a^b}) \text{ is the local model.}$
Definition: A complex bordism with thin parts is a ringed space (Σ, O_{Σ}) equipped with subspaces
 $\partial in \Sigma \subseteq \Sigma$ and $\partial out \Sigma \subseteq \Sigma$ (nat necessarily disjoint)
which is locally isomorphic to $(X_a^b, O_{X_a^b})$ for some $a \leq b$, and $\partial in \Sigma, \partial out \Sigma$ are locally $\partial in X_a^b, \partial out X_a^b$.
Given oriented 1-monifolds S_1, S_2, a bordism with thin parts $\Sigma : S_1 = VS_2$ is a diffeomorphism
 $(\Sigma, O_{\Sigma}, V_{in}, V_{aut})$ with $V_{in}: S_1 \to \partial in \Sigma, V_{aut}: S_2 \to \partial out\Sigma$
For $\Sigma : S_1 = DS_2$ and $\Sigma' : S_2 = DS_3$ bordisms with thin parts, then conformal webling gives

-

For every
$$\widetilde{A} \in \operatorname{Amn}_{c}(S)$$

a trivialization
 $T\widetilde{A} : F_{A} \xrightarrow{\cong} \operatorname{idep(S)}_{topologically trivial}$
 $\operatorname{Ann}(S) = \operatorname{semigroup} \circ f \circ \operatorname{annuli}_{i}$
 $\operatorname{Ann}(S) = \operatorname{semigroup} \circ \operatorname{semi$