Bibliography
Seminar on \(\infty\)-categories
Here is a good list of references for our course.
References:
- Charles Rezk’s notes “Introduction to Quasicategories”:
https://faculty.math.illinois.edu/~rezk/quasicats.pdf
- Markus Land’s Book “Introduction to Infinity-Categories” (2021, Birkhauser)
- Mark Groth’s “A Short Course on \(\infty\)-categories”
https://arxiv.org/pdf/1007.2925.pdf
- Yonathan Harpaz’s lecture notes (includes stuff about factorization homology and \(\infty\)-operads):
https://www.math.univ-paris13.fr/~harpaz/lecture_notes.pdf
- Lurie’s “Higher Topos Theory”:
https://arxiv.org/pdf/math/0608040.pdf
- Lurie’s (mammoth-sized) Kerodon: https://kerodon.net/
Course & Seminar examples:
- Gijs Heuts’ Course on \(\infty\)-categories: https://sites.google.com/site/gijsheuts/teaching/higher-category-theory
- Charles Rezks’s course: https://faculty.math.illinois.edu/~rezk/595-sp22/math-595-sp22.html
- Seminar on \(\infty\)-categories ran at Tokyo University:
- Course delivered at the University of Hamburg by Tobias Dyckerhoff: https://www.math.uni-hamburg.de/home/dyckerhoff/higher/index.html
Category Theory Books:
We strongly recommend the following textbooks to learn or revist the basics of (ordinary) category theory:
- Emily Riehl’s “Category Theory in Context”:
https://emilyriehl.github.io/files/context.pdf
- Tom Leinster’s “Basic Category Theory”:
https://arxiv.org/pdf/1612.09375.pdf
- Mac Lane’s (mythical) “Categories for the Working Mathematician”